24 research outputs found

    Maximum Power Extraction from a Standalone Photo Voltaic System via Neuro-Adaptive Arbitrary Order Sliding Mode Control Strategy with High Gain Differentiation

    Get PDF
    In this work, a photovoltaic (PV) system integrated with a non-inverting DC-DC buck-boost converter to extract maximum power under varying environmental conditions such as irradiance and temperature is considered. In order to extract maximum power (via maximum power transfer theorem), a robust nonlinear arbitrary order sliding mode-based control is designed for tracking the desired reference, which is generated via feed forward neural networks (FFNN). The proposed control law utilizes some states of the system, which are estimated via the use of a high gain differentiator and a famous flatness property of nonlinear systems. This synthetic control strategy is named neuroadaptive arbitrary order sliding mode control (NAAOSMC). The overall closed-loop stability is discussed in detail and simulations are carried out in Simulink environment of MATLAB to endorse effectiveness of the developed synthetic control strategy. Finally, comparison of the developed controller with the backstepping controller is done, which ensures the performance in terms of maximum power extraction, steady-state error and more robustness against sudden variations in atmospheric conditions

    Real-Time Energy Management and Load Scheduling with Renewable Energy Integration in Smart Grid

    No full text
    With the smart grid development, the modern electricity market is reformatted, where residential consumers can actively participate in the demand response (DR) program to balance demand with generation. However, lack of user knowledge is a challenging issue in responding to DR incentive signals. Thus, an Energy Management Controller (EMC) emerged that automatically respond to DR signal and solve energy management problem. On this note, in this work, a hybrid algorithm of Enhanced Differential Evolution (EDE) and Genetic Algorithm (GA) is developed, namely EDGE. The EMC is programmed based with EDGE algorithm to automatically respond to DR signals to solve energy management problems via scheduling three types of household load: interruptible, non-interruptible, and hybrid. The EDGE algorithm has critical features of both algorithms (GA and EDE), enabling the EMC to generate an optimal schedule of household load to reduce energy expense, carbon emission, Peak to Average Ratio (PAR), and user discomfort. To validate the proposed EDGE algorithm, simulations are conducted compared to the existing algorithms like Binary Particle Swarm Optimization (BPSO), GA, Wind Driven Optimization (WDO), and EDE. Results illustrate that the proposed EDGE algorithm outperforms benchmark algorithms in energy expense minimization, carbon emission minimization, PAR alleviation, and user discomfort maximization

    A Hybrid Heuristic Algorithm for Energy Management in Electricity Market with Demand Response and Distributed Generators

    No full text
    Optimal energy management trends are indispensable in improving the power grid’s reliability. However, power usage scheduling for energy management (EM) poses several challenges on a practical and technical level. This paper develops an energy consumption scheduler (ECS) to solve the power usage scheduling problem for optimal EM and overcome the major challenge in demand response (DR) implementation. This work aims to solve the power usage scheduling problem for EM to optimize utility bill, peak energy demand, and pollution emission while considering the varying pricing signal, distributed generators (DGs), household load, energy storage batteries, users, and EUC constraints. The ECS is based on a stochastic algorithm (genetic wind-driven optimization (GWDO) algorithm) because generation, DGs, demand, and energy price are stochastic and uncertain. The ECS based on the GWDO algorithm determines the optimal operation schedule of household appliances and batteries charge/discharge for a day time horizon. The developed model is analyzed by conducting simulations for two cases: home is not equipped with DGs, and home is equipped DGs in terms of utility bill, peak energy demand, and pollution emission. The simulation results validated the proposed model’s applicability to EM problems

    Optimal Energy Consumption Scheduler Considering Real-Time Pricing Scheme for Energy Optimization in Smart Microgrid

    No full text
    Energy consumption schedulers have been widely adopted for energy management in smart microgrids. Energy management aims to alleviate energy expenses and peak-to-average ratio (PAR) without compromising user comfort. This work proposes an energy consumption scheduler using heuristic optimization algorithms: Binary Particle Swarm Optimization (BPSO), Wind Driven Optimization (WDO), Genetic Algorithm (GA), Differential Evolution (DE), and Enhanced DE (EDE). The energy consumption scheduler based on these algorithms under a price-based demand response program creates a schedule of home appliances. Based on the energy consumption behavior, appliances within the home are classified as interruptible, noninterruptible, and hybrid loads, considered as scenario-I, scenario-II, and scenario-III, respectively. The developed model based on optimization algorithms is the more appropriate solution to achieve the desired objectives. Simulation results show that the expense and PAR of schedule power usage in each scenario are less compared to the without-scheduling case

    Harnessing the Power of Sensors and Machine Learning to Design Smart Fence to Protect Farmlands

    No full text
    Agriculture and animals are two crucial factors for ecological balance. Human–wildlife conflict is increasing day-by-day due to crop damage and livestock depredation by wild animals, causing local farmer’s economic loss resulting in the deepening of poverty. Techniques are needed to stop the crop damage caused by animals. The most prominent technique used to protect crops from animals is fencing, but somehow, it is not a full-proof solution. Most fencing techniques are harmful to animals. Thousands of animals die due to the side effects of fencing techniques, such as electrocution. This paper introduces a virtual fence to solve these issues. The proposed virtual fence is invisible to everyone, because it is an optical fiber sensor cable, which is laid 12-inches-deep in soil. A laser light is used at the start of the fiber sensor cable, and a detector detects at the end of the cable. The technique is based on the reflection of light inside the fiber optic cable. The interferometric technique is used to predict the changes in the pattern of the laser light. The fiber cable sensors are connected to a microprocessor, which can predict the intrusion of any animal. The use of machine learning techniques to pattern detection makes this technique highly efficient. The machine learning algorithms developed for the identification of animals can also classify the animal. The paper proposes an economical and feasible machine-learning-based solution to save crops from animals and to save animals from dangerous fencing. The description of the complete setup of optical fiber sensors, methodology, and machine learning algorithms are covered in this paper. This concept was implemented and regressive tests were carried out. Tests were performed on the data, which were not used for training purposes. Sets of people (50 people in each set) were randomly moved into the fiber optic cable sensor in order to test the effectiveness of the detection. There have been very few instances where the algorithm has been unable to categorize the detections into different animal classes. Three datasets were tested for configuration effectiveness. The complete setup was also tested in a zoo to test the identification of elephants and tigers. The efficiency of identification is 94% for human, 80% for tiger, and 75% for elephant

    Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles

    No full text
    The modern power system is characterized by the massive integration of renewables, especially wind power. The intermittent nature of wind poses serious concerns for the system operator owing to the inaccuracies in wind power forecasting. Forecasting errors require more balancing power for maintaining frequency within the nominal range. These services are now offered through conventional power plants that not only increase the operational cost but also adversely affect the environment. The modern power system emphasizes the massive penetration of wind power that will replace conventional power plants and thereby impact the provision of system services from conventional power plants. Therefore, there is an emergent need to find new control and balancing solutions, such as regulation reserves from wind power plants and electric vehicles, without trading off their natural behaviors. This work proposes real-time optimized dispatch strategies for automatic generation control (AGC) to utilize wind power and the storage capacity of electric vehicles for the active power balancing services of the grid. The proposed dispatch strategies enable the AGC to appropriately allocate the regulating reserves from wind power plants and electric vehicles, considering their operational constraints. Simulations are performed in DIgSILENT software by developing a power system AGC model integrating the generating units and an EVA model. The inputs for generating units are considered by selecting a particular day of the year 2020, when wind power plants are generating high power. Different coordinated dispatch strategies are proposed for the AGC model to incorporate the reserve power from wind power plants and EVs. The performance of the proposed dispatch strategies is accessed and discussed by obtaining responses of the generating units and EVs during the AGC operation to counter the initial power imbalances in the network. The results reveal that integration of wind power and electric vehicles alongside thermal power plants can effectively reduce real-time power imbalances acquainted in power systems due to massive penetration of wind power that subsequently improves the power system security. Moreover, the proposed dispatch strategy reduces the operational cost of the system by allowing the conventional power plant to operate at their lower limits and therefore utilizes minimum reserves for the active power balancing services

    Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles

    No full text
    The modern power system is characterized by the massive integration of renewables, especially wind power. The intermittent nature of wind poses serious concerns for the system operator owing to the inaccuracies in wind power forecasting. Forecasting errors require more balancing power for maintaining frequency within the nominal range. These services are now offered through conventional power plants that not only increase the operational cost but also adversely affect the environment. The modern power system emphasizes the massive penetration of wind power that will replace conventional power plants and thereby impact the provision of system services from conventional power plants. Therefore, there is an emergent need to find new control and balancing solutions, such as regulation reserves from wind power plants and electric vehicles, without trading off their natural behaviors. This work proposes real-time optimized dispatch strategies for automatic generation control (AGC) to utilize wind power and the storage capacity of electric vehicles for the active power balancing services of the grid. The proposed dispatch strategies enable the AGC to appropriately allocate the regulating reserves from wind power plants and electric vehicles, considering their operational constraints. Simulations are performed in DIgSILENT software by developing a power system AGC model integrating the generating units and an EVA model. The inputs for generating units are considered by selecting a particular day of the year 2020, when wind power plants are generating high power. Different coordinated dispatch strategies are proposed for the AGC model to incorporate the reserve power from wind power plants and EVs. The performance of the proposed dispatch strategies is accessed and discussed by obtaining responses of the generating units and EVs during the AGC operation to counter the initial power imbalances in the network. The results reveal that integration of wind power and electric vehicles alongside thermal power plants can effectively reduce real-time power imbalances acquainted in power systems due to massive penetration of wind power that subsequently improves the power system security. Moreover, the proposed dispatch strategy reduces the operational cost of the system by allowing the conventional power plant to operate at their lower limits and therefore utilizes minimum reserves for the active power balancing services

    Detection and Prevention of False Data Injection Attacks in the Measurement Infrastructure of Smart Grids

    No full text
    The smart grid has become a cyber-physical system and the more cyber it becomes, the more prone it is to cyber-attacks. One of the most important cyber-attacks in smart grids is false data injection (FDI) into its measurement infrastructure. This attack could manipulate the control center in a way to execute wrong control actions on various generating units, causing system instabilities that could ultimately lead to power system blackouts. In this study, a novel false data detection and prevention paradigm was proposed for the measurement infrastructure in smart grids. Two techniques were devised to manage cyber-attacks, namely, the fixed dummy value model and the variable dummy value model. Limitations of the fixed dummy value model were identified and addressed in the variable dummy value model. Both methods were tested on an IEEE 14 bus system and it was shown through the results that an FDI attack that easily bypassed the bad data filter of the state estimator was successfully identified by the fixed dummy model. Second, attacks that were overlooked by the fixed dummy model were identified by the variable dummy method. In this way, the power system was protected from FDI attacks

    A Distributed Hierarchical Control Framework for Economic Dispatch and Frequency Regulation of Autonomous AC Microgrids

    No full text
    Motivated by the single point of failure and other drawbacks of the conventional centralized hierarchical control strategy, in this paper, a fully distributed hierarchical control framework is formulated for autonomous AC microgrids. The proposed control strategy operates with a distinct three-layer structure, where: a conventional droop control is adopted at the primary layer; a distributed leaderless consensus-based control is adopted at the secondary layer for active power and, hence, frequency regulation of distributed generating units (DGUs); and the tertiary layer is also based on the distributed leaderless consensus-based control for the optimal power dispatch. Under the proposed strategy, the three constituent control layers work in a coordinated manner. Not only is the load dispatched economically with a negligible power mismatch, but also the frequencies of all the DGUs are regulated to the reference value. However, the frequency regulation is achieved without requiring any central leader agent that has been reported in the contemporary distributed control articles. As compared to the conventional centralized hierarchical control, the proposed strategy only needs local inter-agent interaction with a sparse communication network; thus, it is fully distributed. The formulated strategy is tested under load perturbations, on an autonomous AC microgrid testbed comprising both low-inertia-type (inverter-interfaced) and high-inertia (rotating)-type DGUs with heterogeneous dynamics, and found to successfully meet its targets. Furthermore, it can offer the plug-and-play operation for the DGUs. Theoretical analysis and substantial simulation results, performed in the MATLAB/Simulink environment, are provided to validate the feasibility of the proposed control framework

    A Distributed Hierarchical Control Framework for Economic Dispatch and Frequency Regulation of Autonomous AC Microgrids

    No full text
    Motivated by the single point of failure and other drawbacks of the conventional centralized hierarchical control strategy, in this paper, a fully distributed hierarchical control framework is formulated for autonomous AC microgrids. The proposed control strategy operates with a distinct three-layer structure, where: a conventional droop control is adopted at the primary layer; a distributed leaderless consensus-based control is adopted at the secondary layer for active power and, hence, frequency regulation of distributed generating units (DGUs); and the tertiary layer is also based on the distributed leaderless consensus-based control for the optimal power dispatch. Under the proposed strategy, the three constituent control layers work in a coordinated manner. Not only is the load dispatched economically with a negligible power mismatch, but also the frequencies of all the DGUs are regulated to the reference value. However, the frequency regulation is achieved without requiring any central leader agent that has been reported in the contemporary distributed control articles. As compared to the conventional centralized hierarchical control, the proposed strategy only needs local inter-agent interaction with a sparse communication network; thus, it is fully distributed. The formulated strategy is tested under load perturbations, on an autonomous AC microgrid testbed comprising both low-inertia-type (inverter-interfaced) and high-inertia (rotating)-type DGUs with heterogeneous dynamics, and found to successfully meet its targets. Furthermore, it can offer the plug-and-play operation for the DGUs. Theoretical analysis and substantial simulation results, performed in the MATLAB/Simulink environment, are provided to validate the feasibility of the proposed control framework
    corecore